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2 Selina Carter

Abstract

Uncertainty quantification (UQ) is essential for performing statistical
inference on parameters or outcomes of interest. This thesis compares
methods for constructing confidence and prediction intervals using
online algorithms and neural networks. There are three main areas:

Inference using online algorithms. Many data sources arrive
in a streaming, “online” fashion or are too large for traditional estima-
tion tools. Stochastic gradient descent (SGD) is a popular estimation
technique in these cases. This thesis evaluates recent methods for
conducting inference in this setting, specifically: the Averaged SGD
(ASGD) plug-in variance estimator, t-statistic methods, and the Hull-
based Confidence Interval (HulC). Through a simulation study on
simple inference tasks—linear and logistic regression in both low and
high dimensions—we find that the HulC method performs compara-
bly to the t-statistic method and significantly outperforms the plug-in
ASGD variance estimator in terms of attaining the desired coverage and
minimizing confidence interval width. This result is possibly explained
by the high sensitivity of ASGD plug-in method to tuning parame-
ters such as the learning rate, whereas the HulC benefits from fewer
assumptions and greater robustness to hyperparameter choices.

We seek to run additional experiments using other online algorithms
such as implicit SGD (Toulis and Airoldi, 2017), ROOT-SGD (Li et al.,
2022), gradient-free SGD (Chen et al., 2024), and truncated SGD (Zhou
et al., 2021).

Neural network ensembles for UQ. Existing work on ensem-
bles of neural networks largely overlooks the utility of bootstrapping
data as a UQ technique. Bootstrapping is a non-parametric statistical
technique for quantifying uncertainty when the estimator’s theoretical
distribution is unknown. However, it relies on key assumptions—one
sufficient condition being the Hadamard differentiability of the estima-
tor (or functional). We investigate the conditions under which neural
network estimators of the underlying function f(x), given fixed input x,
satisfy Hadamard differentiability, enabling bootstrapping as a point-
wise UQ method for inferring f(x) up to some pointwise bias. Our
simulations on simple problems demonstrate that by bootstrapping
training data in multi-layer perceptrons (MLPs) using relu or tanh
activation functions, we can construct pointwise confidence intervals
that achieve the target uncertainty level for f(x) if the neural network
architecture is sufficiently flexible. Since bootstrapped ensembles are
computationally expensive, we additionally explore new techniques
that reduce this computational burden, such as importance sampling,
t-statistics, and HulC-based approaches. As an application in physics,
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we examine the challenge of inferring temporal state-to-state dynamics
of plasma in a Tokamak—a magnetic confinement device central to
thermonuclear fusion research. We evaluate the effectiveness of various
ensembles for accurately inferring these dynamics through a simulation
study using generated Tokamak ground-truth data.

Prediction intervals for streaming time series using prior
finite-horizon data. Given access to multiple (finite-horizon) se-
quences, i.e., {(xi,t, yi,t)Ti

t=1}N
i=1, where xi,t ∈ Rd are covariates and

yi,t ∈ Rp is the state vector we are trying to predict, we want to predict
on a new sequence (xN+1,t, yN+1,t)T0

t=1 that is streaming online and is
right-censored (i.e., we don’t know when the trajectory will end, so we
only observe up to time T0). Our aim is two-fold: first, using a black-box
prediction method (such as recurrent neural networks or transform-
ers) we seek to forecast s-steps-ahead states ŷN+1,T0+1, . . . ŷN+1,T0+s;
second, we want to learn prediction intervals that have tight widths,
primarily focusing on conformal methods. We will first assume the
case of iid or exchangeable sequences and then relax these assumptions.
There are three main outputs: (1) we will develop a new algorithm that
incorporates the previous bank of sequences to predict s-step-ahead
states and prediction bounds; (2) we will show analytically that this
algorithm reduces the prediction interval width compared to baseline
algorithms in the literature, while also maintaining correct theoretical
coverage; (3) in a simulation study, we will test the proposed algorithm
against baseline techniques. As a use case, I will primarily focus on
Tokamak plasma dynamics, a challenging problem in nuclear energy
research.

This idea is inspired principally by recent work (Angelopoulos et al.,
2023) that models non-conformity scores in an online setting: they
assume a single (potentially adversarial) time series consisting of co-
variates (xt ∈ X ) and responses (yt ∈ Y) for t ∈ N, and their aim is to
construct a prediction set Ct that does not require the assumption of
exchangeable data as in standard conformal prediction. They develop
a method (“conformal PID control”) that achieves long-run coverage in
the time horizon T and sharp prediction sets even under distribution
shift. However, they do not consider the framework in which multiple
(finite-horizon) sequences are available (i.e., {(xi,t, yi,t)Ti

t=1}N
i=1) prior

to predicting on a new sequence that is streaming. We seek to ex-
plore if, under additional assumptions on the additional sequence data
(such relevancy to the new unknown trajectory), we can analytically
reduce widths of the prediction intervals than the method proposed by
Angelopoulos et al. (2023).
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Introduction

Uncertainty quantification (UQ) is essential for performing statistical infer-
ence on parameters or outcomes of interest. This thesis compares methods
for constructing confidence and prediction intervals using online algorithms
and neural networks.

There are three main areas of this thesis. The first is inference using
online algorithms (1), which focuses on constructing confidence intervals
with streaming data. The second is neural network ensembles for UQ
(2), which focuses on constructing pointwise confidence intervals using neural
networks in a computationally efficient manner. The third is prediction
intervals for streaming time series using prior finite-horizon data
(3), which explores black-box prediction methods to forecast future states in
temporally dependent sequences, given a bank of existing trajectories.

Following, I will individually detail each project including prior literature,
proposed work, and next steps. Section 4 describes the overall thesis timeline
across all projects.

1 Inference using online algorithms

Many data sources arrive in a streaming, “online” fashion or are too large
for traditional estimation tools. Stochastic gradient descent (SGD) is a
popular estimation technique in these cases. However, statistical inference
for online algorithms is a difficult problem because estimation of asymptotic
variance can inflate the computational cost: estimators obtained from on-
line/sequential algorithms forces one to consider the computational aspects
of the inference problem, i.e., one cannot access all of the data as many times
as needed. Previous works have proposed online estimation of the covariance
matrix as well as batching methods to construct confidence intervals. In
this work, we propose the use of the recently developed HulC (hull-based
confidence) procedure for uncertainty quantification in the online setting.
The highlights of this procedure include: no inflation in the computational
cost; no estimation of the asymptotic variance; and asymptotically exact
coverage.

We compare the performance of the HulC procedure with those of previous
works in the context of linear and logistic regression over a wide range of
covariance settings and dimension-aspect ratios (Carter and Kuchibhotla,
2025). Our main finding is that we get comparable or better coverage
properties compared to the methods that estimate the asymptotic variance.
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We also find that although SGD is the most commonly mentioned method
in machine learning – and while its cousin, averaged SGD (ASGD), has
desirable asymptotic properties for inference purposes – our implementation
and simulations show that the practical performance of ASGD is highly
sensitive to the choice of tuning parameters of the algorithm. We could
not find a simple remedy that improves performance and also makes the
asymptotic properties manageable. This was at least surprising. It is unclear
if this is a well-known observation in the literature on online algorithms, and
we hope that this work acts as a word of caution to anyone using online
algorithms blindly.

1.1 Motivation and prior literature

Suppose we have data Z1, . . . , ZT that are generated independently from a
common distribution P . The analyst is interested in a summary functional
θ∞(P ) ∈ Rd defined by the optimization problem:

θ∞ ≡ θ∞(P ) := argmin
θ∈Rd

EP [ℓ(Z; θ)],

for some loss function ℓ(·; ·). The objective function is EP [ℓ(Z; θ)]. We
(implicitly) assume that θ∞ is uniquely defined. Based on the data, a natural
estimator (referred to as the M -estimator) of θ∞ is based on the empirical
loss:

θ̂T := argmin
θ∈Rd

1
T

T∑
i=1

ℓ(Zi; θ). (1)

How do we perform inference on θ∞ in an online fashion? Construction
of confidence intervals for functionals based on asymptotically normal es-
timators (i.e., Wald inference procedures) is a classical topic in statistical
inference. In the online setting, the ground-breaking work by Robbins and
Monro (1951) introduced the first formal stochastic approximation procedure
for finding the optimum of a regression function, becoming a cornerstone
of statistical optimization. Several works have modified stochastic approx-
imation algorithms with better finite-sample or asymptotic performance.
Stochastic gradient descent with averaging by Ruppert (1988) and Polyak
and Juditsky (1992), otherwise known as averaged SGD (ASGD), is one of
the first such refinements. They establish that, given the ASGD estimator
θ̄T and under key assumptions (a fixed dimension d, a strongly convex ob-
jective function J , a Lipschitz gradient ∇θEP [ℓ(Z; θ)], and step sizes ηt that
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diminish sufficiently slowly to 0), they prove that
√
T (θ̄T − θ∞) d→ N(0, J−1V J−1),

where J := ∇2
θEP [ℓ(Z; θ∞)] is the Hessian matrix of the objective function

at θ = θ∞ and V is the covariance matrix of ∇θℓ(Z; θ)∞.
Relatively recently, efficient online inference for θ∞ has garnered renewed

research interest. Early contributions include Pelletier (2000) and Gahbiche
and Pelletier (2000) both of which seemingly went unnoticed by the more
recent work Chen et al. (2020). See Carter and Kuchibhotla (2025) for an
elaborate discussion of recent literature. All these works propose different
online estimators θ̃T such that

rT (θ̃T − θ∞) d→ N(0,Γ),

for some rate of convergence rT and some covariance matrix Γ. The key is
to be able to estimate Γ in an online fashion such that confidence intervals
can be constructed for each new sample Zi. For example, Chen et al. define
an online plug-in estimator for Γ = J−1V J−1 as well as a batch-means
estimator. [Elaborate the rate of convergence etc]

In addition, there are some alternatives to this online Wald inference pro-
cedure, including bootstrap-based methods, the functional central limit theo-
rem (CLT), or the t-statistic; see Fang et al. (2018), Zhong et al. (2023), Lam
and Wang (2023), Lee et al. (2022), and Zhu et al. (2024). Except for the
method of Zhu et al. (2024) (based on Ibragimov and Müller (2010)), all
other existing methods require additional computations or memory com-
pared to the original online algorithm. For example, the variance estimators
of Gahbiche and Pelletier (2000) and Chen et al. (2020) require storing the
intermediate iterations of the SGD, and the bootstrap method of Fang et al.
(2018) requires running a large number of SGDs parallel to the original SGD.
In addition, all existing methods (except Zhu et al. (2024)) require some addi-
tional structure on the online algorithm in addition to asymptotic normality.
Moreover, even relying on asymptotic normality is restrictive from the point
of view of finite-sample performance. In the following section, we propose the
application of HulC (Kuchibhotla et al., 2024) for computationally efficient,
rate-optimal, and asymptotically valid confidence regions for θ∞.

1.2 Objectives and Contributions

In Carter and Kuchibhotla (2025), we propose computationally efficient, rate-
optimal, and asymptotically valid confidence regions based on the output of
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online algorithms without estimating the asymptotic variance. As a special
case, this implies inference from any algorithm that yields an asymptoti-
cally normal estimator. We focus our efforts on the ASGD estimator, θ̄T .
The online HulC confidence interval (CI) is described in Section 5.1 of the
Appendix.

Kuchibhotla et al. (2024) provide a finite-sample validity guarantee for
this confidence interval, which we restate in the following result:

Theorem 1. Suppose Z1, Z2, . . . , ZT are independent random variables.
Then for 1 ≤ k ≤ d,

P
(
e⊤

k θ∞ /∈ ĈI(k)
T,α

)
≤ α

(
1 + 2(Bα∆T )2e2Bα∆T

)
,

where

∆T := max
1≤j≤Bα

(
1
2 − min

γ∈{±1}
P(γ(e⊤

k θ̄
(j)
T − e⊤

k θ∞) ≤ 0)
)

+
,

represents the maximum median bias of the estimators.

Proof. The result follows from Theorem 2 of Kuchibhotla et al. (2024).

1.2.1 Simulation study

In a simulation study, we assess the utility of HulC by comparing confidence
regions for θ∞ ∈ Rd on two simple cases: linear regression and logistic
regression. Mimicking the simulation settings from Chen et al. (2020), we
generate T iid samples (Yi, Xi), 1 ≤ i ≤ T (for further details, see section 4
of Carter and Kuchibhotla, 2025). Throughout, we aim to cover e⊤

k θ∞ with
a 95% confidence for each coordinate k ∈ {1, 2, . . . , d}. We take non-random
scalar step sizes of the form ηt = ct−0.505, with a grid of c values.

We compare four different inference methods: (1) the Wald interval (an
offline method used as a baseline); (2) the ASGD plug-in estimator by Chen
et al. (2020); (3) ASGD t-stat (Ibragimov and Müller, 2010; Zhu et al., 2024);
and (4) the online HulC CI based on ASGD estimators. The definitions are
in Appendix 5.2.

1.3 Findings

Figure 1 shows the “typical behavior” of the inference methods in the case of
linear regression, Toeplitz covariance, and a high dimension (d = 100). Our
findings at a high level are as follows:
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8 Selina Carter

• ASGD is highly sensitive to hyperparameter c: There is a
“Goldilocks zone” of c (depending on the model parameters) in which
the ASGD estimator θ̄T converges to θ∞, which can be quite narrow
depending on the problem. We do not know of any theoretical results
supporting these empirical observations.

• The ASGD plug-in confidence interval undercovers θ∞: This
undercoverage might stem from two sources: (i) slow rate of convergence
to asymptotic normality; and (ii) slow rate of consistency of the ASGD
plug-in variance estimation. (See Figures 5, 6, and 7 in the Appendix).

• Both the t-stat and HulC intervals achieve the correct coverage
for an appropriately chosen c: This suggests that these online
methods are practical alternatives to the ASGD plug-in estimator.

• HulC confidence intervals are “comparable” in width: Typically,
HulC confidence intervals are wider than all other methods and this is
in line with the theoretical width analysis of Kuchibhotla et al. (2024).
Our numerical study suggests that the HulC intervals are only slightly
wider than those of the t-stat for most choices of c, T , and covariance
schemes.

1.3.1 Directions for future research

We seek to run additional experiments using other online algorithms such
as implicit SGD (Toulis and Airoldi, 2017), ROOT-SGD (Li et al., 2022),
gradient-free SGD (Chen et al., 2024), and truncated SGD (Zhou et al.,
2021).

2 Neural network ensembles for UQ

Existing works on ensembles of neural networks largely overlook the utility of
bootstrapping data as a UQ method. Bootstrapping is a non-parametric sta-
tistical technique for quantifying uncertainty when the estimator’s theoretical
distribution is unknown. However, recent findings suggest that bootstrap-
ping neural networks is unnecessary; rather, random weight initialization
combined with varying mini-batch sequences in stochastic gradient descent
provides sufficient diversity among ensemble members to capture model
uncertainty for inference (see Nixon et al. (2020); Lakshminarayanan et al.
(2017)). In this work, we challenge this current consensus by constructing
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Figure 1: Linear regression, Covariance = Toeplitz, d = 100

Figure 2: Comparison of Wald, AGSD plug-in, HulC, and t-stat methods in the linear
regression setting with a Toeplitz covariance structure and dimension d = 100. The
ASGD plug-in confidence interval consistently demonstrates poor coverage, while both the
HulC and the t-stat methods generally produce correct coverage for appropriately chosen
c. Meanwhile, the width ratios for t-stat and HulC are not excessively large when c is
appropriately chosen; as the sample size T increases, the ratios decrease.
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10 Selina Carter

pointwise confidence intervals of the (true) underlying function m(x) with
bootstrapping compared to fixed-data (non-bootstrapped) ensembles. We
demonstrate that large fixed-data ensembles relying only on different initial
weights and mini-batch gradient descent typically fail to cover the target
parameter at the desired (1 − α) · 100% rate of uncertainty. Instead, by
bootstrapping data for each neural network member of an ensemble, we can
construct pointwise confidence intervals that achieve the target uncertainty
level for m(x) if the neural network architecture is sufficiently flexible. Since
bootstrapped ensembles are computationally expensive, we additionally ex-
plore three techniques that reduce this computational burden: the “cheap
bootstrap” (Lam, 2022), HulC (Kuchibhotla et al., 2024), and the robust
t-statistic (Zhu et al., 2024).

2.1 Prior literature

Neural networks are a flexible class of estimators which are able to approxi-
mate a large class of functions, even in the presence of noise (Raghu et al.,
2017). Neural network ensembles – commonly referred to as deep ensembles –
are widely used across many fields due to their strong empirical performance.
By training B separate models and aggregating their predictions, ensembles
often achieve better results than any individual model alone. The simplest
type of ensemble is to average the predictions of the B models. If the B
models are trained on independent data sets, such a procedure can lead to a
reduction in bias of the final prediction (Bishop and Nasrabadi, 2006). When
given a single dataset, aggregation of B models using bootstrapped samples
(bagging see for example Breiman, 1996), which reduces the expected error
of the ensemble prediction over individual models.

Used in this way, deep ensembles aim to enhance the stability and unbi-
asedness of point estimates; hence, they do not directly address uncertainty
quantification, such as confidence intervals. Bootstrapping (Efron, 1979),
on the other hand, has been used in a variety of inferential and UQ tasks,
including linear and nonlinear regression (Heng and Lange, 2025), non-linear
non-parametric regression (Chernozhukov et al., 2022), and even time series
models (Xu and Xie, 2021a). As a resampling-based method, bootstrapping
offers a way to approximate the sampling distribution of an estimator, en-
abling the construction of confidence intervals, which is particularly useful
when the theoretical distribution is unknown or difficult to derive – such is
the case for neural networks.

However, the role of bootstrapping in training deep ensembles for un-
certainty quantification has been largely overlooked. Notably, Lakshmi-
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narayanan et al. (2017) established a widely adopted practice of using only
random weight initialization and varied mini-batch sequences across ensem-
ble members without applying bootstrapping. Further, Nixon et al. (2020)
argued that bootstrapped deep ensembles offer no performance benefit. How-
ever, their evaluation focused on predictive “accuracy" (i.e., reducing the
variance of the estimator), rather than producing a confidence interval, which
is the goal of bootstrapping and central to uncertainty quantification more
broadly. Additionally, their experiments were limited to classification tasks
rather than regression.

2.2 Objectives

We seek to challenge the current consensus that maintains bootstrapping
is an unnecessary procedure for UQ using deep ensembles. We primarily
explore this through simulations. We conduct extensive experiments to test
if bootstrapping enables superior pointwise (1 − α) · 100% confidence
intervals in regression problems using deep ensembles, as opposed to relying
solely on different initialization and fixed (non-bootstrapped) data for each
ensemble member. In addition, since quantile-based UQ with bootstrapping
requires a large ensemble size and is computationally expensive, we apply
alternative approaches requiring only a small ensemble size, namely: the
“cheap bootstrap” (Lam, 2022), HulC (Kuchibhotla et al., 2024), and the
robust t-statistic (Zhu et al., 2024).

2.2.1 Preliminary

We consider a training dataset Dn := {Xi, Yi}n
i=1, with input Xi ∈ Rd and

output Yi ∈ R. Note that the results also apply to a vector-output Yi

by applying the UQ procedure separately to each coordinate. Our goal is
to construct a (1 − α) · 100% pointwise confidence interval over true
conditional expectation of Yi given Xi = xi, i.e.,

m(xi) := E[Yi|Xi = xi],

and we assume the residuals εi := Yi − m(xi) are independent random
variables with mean 0 and finite conditional variance σ2

ε(xi) < ∞. Our
approximating function for m is a fully-connected feedforward neural network
with L hidden layers and H hidden units per layer. Specifically, if L = 1,
then the output of the neural network is

fH(x,θ) := ν0 +
H∑

h=1
νhψ(x̃⊤ωh),
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where θ := [ω1, . . . ,ωH , ν0, . . . , νH ]⊤ is the vector of network weights, the
activation function ψ is applied to each hidden unit, and x̃ := [1,x⊤]⊤ ∈
Rd+1 is the input vector with the intercept (or “bias”) component. As in
Franke and Neumann (2000), we assume the network function is uniquely
parameterized by restricting the parameter space to a fundamental compact
domain ΘH , which excludes symmetry operations of the weight vector,
making θ identifiable. The training procedure minimizes the objective
function J under squared error loss:

J(θ) := E[(Yi − fH(Xi,θ))2]

Using mini-batch gradient descent and random weight initialization over a
fixed number of epochs (without early stopping), we train the network to
obtain an estimate θ̂ of θ, producing f̂H(x) := fH(x, θ̂), namely,

θ̂n := argmin
θ∈ΘH

1
n

n∑
i=1

(Yi − fH(Xi,θ))2

For simplicity, we will write fH and f̂H to denote a fully connected neural
network given a particular fixed number of hidden layers L ≥ 1 and hidden
neurons H.

2.2.2 Theoretical sketch

Here I provide a sketch of a theoretical direction that underpins the utility
of bootstrapping a neural network to construct a (1 − α) · 100% pointwise
confidence interval over m(x); this section needs more rigor.

If m(x) = fH(x,θ0) for some θ0 ∈ ΘH (i.e., the neural network architec-
ture is correctly specified), then a non-linear regression central limit theorem
for θ̂n enables inference on θ0 (see Franke and Neumann (2000), p. 1931).
Furthermore, using the delta method, one can perform inference on m(x).

In the misspecified case where m(x) ̸= fH(x,θ0), then θ̂n converges to
the parameter of the best network function approximator for m(x) (denoted
by θ̃0 := argminθ∈ΘH

J(θ)) if (A1) the activation function ψ is bounded and
twice continuously differentiable with bounded derivatives, and m is bounded;
(A2) J(θ) has a unique global minimum at θ̃0 lying in the interior of ΘH

and ∇2J(θ̃0) is positive definite (Franke and Neumann, 2000; White, 1989).
As stated by Franke and Neumann (2000), the central limit theorem results
on one-hidden-layer (L = 1) networks can also be applied to multi-layer
networks (L > 1).

The bootstrap provides an alternative approximation for the distribution
of θ̂n − θ̃0 if we have access to a uniformly consistent estimator m̂ for m
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(Franke and Neumann, 2000), such as “connectionist sieve estimator” (White,
1990), where the complexity of the network is allowed to grow with n. (Note
that Franke and Neumann (2000) offer a non-standard bootstrap procedure
that we should explore.) However, inference requires a central limit theorem
for this case; otherwise, if the dimension of the network is fixed, then there
is unknown bias (error) in the approximation of m.

2.2.3 Methods

Through experiments on simulated data, we use five methods that produce
(1−α) ·100% pointwise confidence intervals over the true conditional function
m(x) across a grid of x values, where m(x) is approximated by a neural
network f̂H(x) with a fixed architecture (L,H) trained using mini-batch
gradient descent and random weight initialization over a fixed number of
epochs (without early stopping). Ensemble members are all trained in the
same way for each method.

(Method 1) Fixed-data ensemble: We train an ensemble of B = 200
neural networks, each using the same dataset Dn. Each ensemble member is
initialized with a different set of weights as well as a unique set of mini-batches.
We construct confidence intervals using a quantile-based method: for a given
input x, each ensemble member produces a prediction, yielding a set of
estimates {f̂H(x)(1), · · · , f̂H(x)(B)}. We define the pointwise (1 − α)100%
confidence interval CIquantile(α,x) as the inner (1 − α)100th-quantiles of the
B estimates.

(Method 2) Bootstrapped ensemble: We train an ensemble of B =
200 neural networks, each using a bootstrapped dataset D∗

n, that is: the
dataset used to train ensemble member b, i.e., Db

n, is a random sample with
replacement from Dn of size n. We construct confidence intervals using a
quantile-based method: for a given input x, each ensemble member produces
a prediction, yielding a set of estimates {f̂H(x)(1)∗

, · · · , f̂H(x)(B)∗}. We
define the pointwise (1 − α)100% confidence interval CIquantile(α,x) as the
inner (1 − α)100th-quantiles of the B estimates.

(Method 3) Cheap bootstrap (Lam, 2022): To test if a smaller
ensemble can achieve the desired target, we set B ∈ {5, 6, 10, 15, 20, 30} with
bootstrapping to produce a t-statistic-based confidence interval.

(Method 4) Hull-based confidence region (HulC): HulC (Kuchib-
hotla et al., 2024), described in 1.2, outputs a confidence interval that has
coverage of at least (1 − α) · 100% if the median bias of the estimator is at
most ∆ ∈ [0, 0.5]. The computational advantage is that HulC requires no
more than 11 ensemble members for α ≥ 0.001. As a starting point for the
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simulations, we assume ∆ = 0; we also test ∆ ∈ {.1, .2, .25, .3} for cases of
obvious bias in the estimator f̂H .

(Method 5) Robust t-statistic (“tstatH”): This method is an al-
ternative to HulC that computes pointwise t-statistics and corresponding
confidence intervals using the B∗

α estimators {f̂H(x)(1), · · · , f̂H(x)(B∗
α)} where

B∗
α is defined in Algorithm 5.1. It has the same coverage guarantees as HulC.

2.2.4 Experiment setup

We test three data-generating functions according to Table 1, where y =
m(x) + ε, x ∈ Rd, y ∈ R, and ε ∼ N (0, 1) is a standard Gaussian noise.
See Table 2 in the Appendix for hyperparameter settings. For each setting,
we run 100 simulations: each has a new dataset Dn = {Yi,Xi}n

i=1. Given a
particular setting combination s, for each experiment j ∈ {1, . . . , 100}, we
employ one of the five ensemble methods to produce B MLPs. After each
ensemble member b has finished training, we produce pointwise predictions
f̂H(xk) = Ê[Yk|Xk, s](b) for k ∈ {1, . . . ,K}, evaluated over a fixed, equally
spaced grid of input points Xk within the domain ⊗d

i=1[−5, 5]. We set
K = 100 for d = 1 and K = 125 for d = 3. We then produce the (1−α)·100%
pointwise confidence interval for each ensemble method.

Using 100 experiments, we calculate the empirical pointwise coverage rate
as Cs ∈ RK , that is, the average number of times the true function values
m(xk) = E[Yk|Xk] have been covered by the pointwise confidence intervals
produced by each method. Setting α = .05, the target pointwise coverage is
95%. To summarize results to a single metric, we then average the pointwise
coverage rates to an average coverage, i.e. C̄s := 1

K

∑K
k=1 Cs

k ∈ [0, 100],
which should also ideally be 95%. We also compare confidence interval
widths of the five methods. Smaller widths are preferred so that uncertainty
is minimal.

As an example, Figure 8 (Appendix) shows an example ensemble (B =
100) using Method 1 on the sin(x) function.

2.3 Findings

Figure 3 compares all five methods (assuming a median bias ∆ = 0). Further
plots are available in Appendix 5.6. We note the following:

• Fixed-data ensembles (method 1) rarely achieve the desired
pointwise coverage for m(x): except for a tight range of the step
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Figure 3: Over 100 experiments, we plot average coverage for all five methods on all three
functions, with nbs = 32, n = 1000, ψ =relu, ne = 1000, and varying step sizes. “Coverage”
refers to average pointwise coverage across all grid points.

size hyperparameter, which is problem-specific, fixed-data ensembles
are inadequate for UQ on the target function m(x).

• Bootstrapping (method 2) achieves desired pointwise coverage
for m(x) if the step size is appropriate given the problem: if
the step size is too small, bootstrapping undercovers the target; if too
large, overcoverage can occur. If the step size is in the correct mid-sized
range (around 0.001 in most of our examples), then correct coverage is
achieved and interval widths are smallest.

• However, over-coverage for bootstrapping (method 2) is often
a problem: Given a small (mini-batch) size in combination with a
large step size, even if the MLP training has ostensibly "converged",
bootstrapping often achieves 100% pointwise coverage of m(x).

• Like the bootstrap, the cheap bootstrap (method 3) achieves
the target coverage if the tuning parameters are in the right
range (see Figure 11 in the Appendix).

• HulC (method 4) and the robust t-statistic (method 5) achieve
the desired coverage in the case of the 1-dimensional functions
and ∆ = 0. The widths are all comparable, suggesting that the these
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two methods do not compensate the smaller ensemble with more
uncertainty.

• The sin-cos3 function poses greater challenges for HulC (method
4) and the robust t-statistic (method 5), likely due to median
bias. We discover that by setting ∆ = 0.25 and ne ≥ 400, HulC
achieves the correct coverage on the sin-cos3 function (see Figure 4).
Widths are not egregiously higher.

Figure 4: Over 100 experiments, we plot average coverage for HulC with median-bias
upper bound ∆ on all three functions, with nbs = 32, n = 1000, ψ =relu, ne = 1000, and
varying step sizes on the sin-cos3 function. Contrasted with the case of ∆ = 0, we can see
that coverage improves overall as ∆ increases. When the step size η ≥ .01 ≈ exp(−4.6),
coverage is correct for ∆ = 0.25. The widths get larger as ∆ increases—a “price” of median
bias. For η = .01, the width for ∆ = .25 is 5.22, while the width for ∆ = 0 is 3.91, a 33%
increase.

2.4 Directions for future research

Next steps:

• Flesh out the theory of our procedure (i.e., elaborate on Section 2.2.2).

• We should consider adding the non-standard bootstrap procedure to
infer the weight vector θ0 presented by Franke and Neumann (2000),
then using a delta method (or other) technique to infer m(x).

• Since we don’t know the median bias upper bound (∆) a priori on
complicated datasets (such as sin-cos3 and the Tokamak data), we
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could run HulC with ∆ = 0.5 (its maximum value; see Algorithm 1 of
Kuchibhotla et al. (2024)) or run Adaptive Hulc (see Algorithm 2 of
Kuchibhotla et al. (2024)).

• As an application in physics, we will examine the challenge of inferring
temporal state-to-state dynamics of plasma in a Tokamak—a mag-
netic confinement device central to thermonuclear fusion research. We
evaluate the effectiveness of various ensembles for accurately inferring
these dynamics through a simulation study using generated Tokamak
ground-truth data with a pre-specificed neural network artechture.

– Currently, we have the code for the ground-truth data. However,
each neural network takes many hours to run. I need to create a
csv file that records information from each experiment on separate
cluster nodes, instead of doing all 100 experiments on a single
node.

• We should also create more interesting theoretical datasets in higher
dimensions, as well as figure out a way to use “real” data baselines in
the classification context (CIFAR for example).

3 Prediction intervals for streaming time series
using prior finite-horizon data

In this project, I ambitiously seek to develop a new method. The inspiration
comes from my passion for time series (or sequential) data that I had
previously encountered in my work at the Inter-American Development Bank.
As an application in physics, we will examine the challenge of inferring
temporal state-to-state dynamics of plasma in a Tokamak—a magnetic
confinement device central to thermonuclear fusion research. We will first
explore existing black-box prediction methods to forecast future states in
temporally dependent sequences, such as transformers. The next step is
to add a key innovation to existing conformal prediction methods on non-
exchangeable data: we assume access to a bank of existing (finite) trajectories,
which we expect to improve upon existing forecasting/conformal prediction
methods that assume a single time series. Indeed, the presence of a bank
of existing sequences is applicable to the Tokamak dataset, as well as other
potential use cases in finance, robotics, and health.
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3.1 Preliminary

We suppose we have access to multiple (finite-horizon) sequences, i.e.,
{(xi,t, yi,t)Ti

t=1}N
i=1, where xi,t ∈ Rd are covariates and yi,t ∈ Rp is the state

vector we are trying to predict. We want to predict on a new sequence
(xN+1,t, yN+1,t)T0

t=1 that is streaming online and is right-censored (i.e., we
don’t know when the trajectory will end, so we only observe up to time T0).

3.1.1 Objectives

Our aim is two-fold: first, using a black-box prediction method (such as
recurrent neural networks or transformers) we seek to forecast s-steps-ahead
states ŷN+1,T0+1, . . . ŷN+1,T0+s; second, we want to learn prediction intervals
that have tight widths, primarily focusing on conformal methods. We will
first assume the case of iid or exchangeable sequences and then relax these
assumptions.

3.1.2 Outputs

There are three main outputs: (1) we will develop a new algorithm that
incorporates the previous bank of sequences to predict s-step-ahead states and
prediction bounds; (2) we will show analytically that this algorithm reduces
the prediction interval width compared to baseline algorithms in the literature,
while also maintaining correct theoretical coverage; (3) in a simulation study,
we will test the proposed algorithm against baseline techniques. As a use
case, I will primarily focus on Tokamak plasma dynamics, a challenging
problem in nuclear energy research.

3.2 Prior literature

This idea is inspired principally by recent work (Angelopoulos et al., 2023)
that models non-conformity scores in an online setting: they assume a single
(potentially adversarial) time series consisting of covariates (xt ∈ X ) and
responses (yt ∈ Y) for t ∈ N, and their aim is to construct a prediction set
Ct that does not require the assumption of exchangeable data as in standard
conformal prediction. They develop a method (“conformal PID control”) that
achieves long-run coverage in the time horizon T and sharp prediction sets
even under distribution shift. However, they do not consider the framework in
which multiple (finite-horizon) sequences are available (i.e., {(xi,t, yi,t)Ti

t=1}N
i=1)

prior to predicting on a new sequence that is streaming. We seek to explore if,
under additional assumptions on the additional sequence data (such relevancy
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to the new unknown trajectory), we can analytically reduce widths of the
prediction intervals than the method proposed by Angelopoulos et al. (2023).

We identify the same gap in related work on conformal inference for non-
exchangeable (or time series) data: for example, under adaptive conformal
inference (Gibbs and Candes, 2021), a single time series {(xt, yt)}t∈N is
assumed; likewise, other works focus on guarantees for a single stream of
dependent data (Oliveira et al., 2024; Xu and Xie, 2021b, 2023; Zaffran et al.,
2022; Stankeviciute et al., 2021; Barber et al., 2023; Chernozhukov et al.,
2018, 2021; Feldman et al., 2023; Jensen et al., 2022; Gibbs and Candès,
2024)

Barber et al. (2020)outlines the mathematical limitations of producing
conditional (as opposed to marginal) predictive coverage guarantees for a
single time series, but they do not consider the case of multiple time sequences
that could improve knowledge of the future.

3.3 Next steps

• Provide a 1-hour lecture on transformers for time series (for discussion
with Arun; all are invited to join)

• Review literature on black box predictors for time series (ex. Ekam-
baram et al. (2023); Katz (2025); Razzhigaev et al. (2024); Upadhya
(2023); Zeng et al. (2022))

• Discuss ideas on how to improve work by Angelopoulos et al. (2023)
when a bank of trajectories is available.
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4 Timeline

Project 1 Project 2 Project 3 Time window

Investigate and write
code for additional
online CI’s (implicit
SGD, root SGD,
gradient-free SGD,
truncated SGD)

Make code for run-
ning Tokamak sim-
ulations on separate
clusters

Deliver transformer
(for time series) lec-
ture for Committee

September
2025

Prepare poster for
STAMPS workshop
(October 4)

Before Oct 4,
2025

Run code for ad-
ditional online CI’s
and write up results

Write code base for
transformer for time
series

October 2025

Initial idea stage on
theory for new con-
formal prediction

November-
December
2025

Completion of addi-
tional simulations

Completion of addi-
tional simulations

January-
February
2026

Theoretical explo-
ration and design
simulations

March 2026

Simulations May 2026

Write results into dis-
sertation

Write results into dis-
sertation

Simulations Summer 2026

Write results into dis-
sertation

Fall 2026

Defense Defense Defense December
2026
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5 Appendix

5.1 Online HulC algorithm

Online HulC confidence interval

Suppose we have an algorithm A that takes a stream of data and
returns an estimator of θ∞ ∈ Rd, and we want to construct a con-
fidence interval for each of the coordinates of θ∞. The HulC pro-
cedure (Kuchibhotla et al., 2024) to construct a (1 − α)-confidence
interval works as follows:

Step 1: For α ∈ (0, 1], set Bα = ⌈log2(2/α)⌉. With a standard uniform
random variable U , define

B∗
α =

{
Bα, if U > 2Bα(α/2) − 1,
⌊log2(2/α)⌋, otherwise.

The choice of Bα is so that E[21−B∗
α ] = 1 − α. If log2(2/α) is

an integer, then B∗
α = log2(2/α).

Step 2: Compute

θ̄
(j)
T = A(Zj+B∗

α⌊(T −j)/B∗
α⌋, . . . , Zj ; θ(0,j)), for 1 ≤ j ≤ B∗

α.

This means that θ̄
(j)
T is computed based on the data

Zj , ZBα+j , Z2Bα+j , . . .. (Note that this is streaming the data
Z1, . . . , ZT into B∗

α buckets without the knowledge of the
time horizon T .) Note that we allow each estimator to be
constructed starting from a different initial value θ(0,j).

Step 3: For 1 ≤ k ≤ d, construct the confidence interval

ĈI(k)
T,α :=

[
min

1≤j≤B∗
α

e⊤
k θ̄

(j)
T , max

1≤j≤B∗
α

e⊤
k θ̄

(j)
T

]
. (2)

We refer to the confidence interval (2) as the HulC CI.

Draft as of September 2, 2025



22 Selina Carter

5.2 Existing Online Inference Methods

All the existing inference methods for ASGD rely on the expansion and
asymptotic normality of θ̄T . In the following, we briefly summarize the
existing methods that are used for comparison with the HulC confidence
intervals in Section 5.1. Our comparison is not exhaustive, given the numerous
methods in existence.

Wald interval (offline method — baseline): We use the Wald interval
as a baseline method. This uses the global minimizer of the empirical loss
function as defined in (1). The Wald interval is

ĈI(k)
T,α :=

[
e⊤

k θ̂T ±
zα/2

T 1/2 (e⊤
k Ĵ

−1
T V̂T Ĵ

−1
T ek)1/2

]
,

where

ĴT := 1
T

T∑
i=1

∇2ℓ(Zi; θ̂T ) and V̂T := 1
T

T∑
i=1

(∇ℓ(Zi; θ̂T ))(∇ℓ(Zi; θ̂T ))⊤.

ASGD Plug-in (Chen et al., 2020): This is possibly the first general
inference method using ASGD. The confidence interval is given by

ĈI(k)
T,α :=

[
e⊤

k θ̄T ±
zα/2

T 1/2 (e⊤
k J̃

−1
T ṼT J̃

−1
T ek)1/2

]
,

where

J̃T := 1
T

T∑
t=1

∇2ℓ(Zt; θ(t−1)) and ṼT := 1
T

T∑
t=1

(∇ℓ(Zt; θ(t−1)))(∇ℓ(Zt; θ(t−1)))⊤.

In contrast to our asymptotic normality result, the construction of this
confidence interval requires the loss function to be twice differentiable. Addi-
tionally, the results of Chen et al. (2020) imply a slow rate of convergence
of J̃−1

T ṼT J̃
−1
T compared to the offline estimator Ĵ−1

T V̂T Ĵ
−1
T . This directly

impacts the coverage of the ASGD plug-in interval; see Kauermann and
Carroll (2001, Theorem 1). More recent studies offer alternative online
variance estimators without matrix inversion, for instance, Zhu et al. (2023).

ASGD t-stat (Ibragimov and Müller, 2010; Zhu et al., 2024): The t-
statistic for ASGD, proposed by Zhu et al. (2024) and building on the general
method envisioned by Ibragimov and Müller (2010), also relies on bucketing
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the data into B buckets, similar to HulC. The method is as follows: Fix any
B ≥ 2, and compute

θ̄
(j)
T = A(Zj+B⌊(T −j)/B⌋, . . . , Zj ; θ(0,j)), for 1 ≤ j ≤ B.

Compute

θ̃T = 1
B

B∑
j=1

θ̄
(j)
T and σ̃2

k,T = 1
B − 1

B∑
j=1

(e⊤
k θ̄

(j)
T − e⊤

k θ̃T )2.

Report
ĈI(k)

T,α :=
[
e⊤

k θ̃T ± tB−1,α/2σ̃k,T

]
,

where tB−1,α/2 is the (1−α/2)-th quantile of t distribution with B−1 degrees
of freedom. The results of Ibragimov and Müller (2010) and Zhu et al. (2024)
imply that this is an asymptotically valid (1 − α) confidence interval for
any B ≥ 2. Because there is no straightforward method to choose B, we
choose B = B∗ from the HulC confidence interval. This means that for a
95% confidence interval, we use approximately 5 buckets.
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5.3 ASGD figures

(a) Single trajectory of ASGD and SGD for
e⊤

1 θ∞ = 0
(b) Single trajectory of ASGD and SGD
for e⊤

5 θ∞ = 1

(c) Histogram of ASGD estimates for
e⊤

1 θ∞ = 0
(104 replications)

(d) Histogram of ASGD estimates for
e⊤

5 θ∞ = 1
(104 replications)

Figure 5: For the linear regression task with identity covariance, d = 5, T = 103,
and a small step size hyperparameter c = 0.01, both the ASGD and SGD
estimators for θ∞ fail to converge. The distance from the target is worse for the
larger coordinate, e⊤

5 θ∞ = 1, compared to the first coordinate, e⊤
1 θ∞ = 0, likely due

to the initialization procedure, which favors smaller coordinates. In plot (c), which
presents a histogram of 10, 000 repetitions of ASGD, there is no systematic bias:
the mean ASGD estimates for e⊤

1 θ∞ = 0 is −0.0006. However, there is systematic
bias for e⊤

5 θ∞ (as well as all larger coordinates), as seen in (d): the mean ASGD
estimate for e⊤

5 θ∞ = 1 is 0.516.
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(a) Single trajectory of ASGD and SGD for
e⊤

1 θ∞ = 0
(b) Single trajectory of ASGD and SGD
for e⊤

5 θ∞ = 1

(c) Histogram of ASGD estimates for
e⊤

1 θ∞ = 0
(104 replications)

(d) Histogram of ASGD estimates for
e⊤

5 θ∞ = 1
(104 replications)

Figure 6: For the linear regression task with identity covariance, d = 5, T = 103,
and a large step size hyperparameter c = 2, the SGD estimator tends to
converge, but not the ASGD estimator, due to the large initial “wrong SGD points”
at the start of the trajectory. The ASGD estimator is off by a large margin from the
target parameter for both e⊤

1 θ∞ = 0 (a) and e⊤
5 θ∞ = 1 (b). In addition, like the

case when c is small (Figure 5), there is systematic bias: in the histograms of 104

replications, shown in plots (c) and (d), which both exclude the largest 1% outliers,
the mean ASGD estimates for e⊤

1 θ∞ = 0 and e⊤
5 θ∞ = 1 are respectively 4.296 and

4.687.
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(a) Single trajectory of ASGD and SGD
estimates for e⊤

1 θ∞ = 0
(b) Single trajectory of ASGD and SGD
estimates for e⊤

5 θ∞ = 1

(c) Histogram of ASGD estimates for
e⊤

1 θ∞ = 0
(104 replications)

(d) Histogram of ASGD estimates for
e⊤

5 θ∞ = 1
(104 replications)

Figure 7: For the linear regression task with identity covariance, d = 5, T = 103,
and a “mid-range” step size hyperparameter c = 0.5, both the SGD and
ASGD estimators tend to converge. The ASGD estimator appears unbiased: in the
histograms of 104 replications in plots (c) and (d), which both exclude the largest
1% outliers, the mean ASGD estimates for e⊤

1 θ∞ = 0 and e⊤
5 θ∞ = 1 are respectively

−0.0005 and 0.998.
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r0.61
Table 1: Functions employed for the experiments

Function type m(x) d L×H

linear 1 + 2x 1 1 × 32

sine sin(x) 1 2 × 32

sine-cosine sin(x1) cos(5x2) + 0.2x2
3 3 2 × 64

5.4 HulC applied to neural network

Lemma 1. Fixing x, if f̂H(x)(b), 1 ≤ b ≤ B are independent random
variables and

∆ := max
1≤b≤B

Med-Biasm(x)(f̂H(x)(b)) ∈ [0, 1/2],

P
(
m(x) /∈

[
min

1≤b≤B
f̂H(x)(b), max

1≤b≤B
f̂H(x)(b)

])
≤
(1

2 − ∆
)B

+
(1

2 + ∆
)B

.

5.5 Neural network ensemble experiment settings

For each setting, we run 100 simulations: each has a new dataset Dn =
{Yi,Xi}n

i=1. Given a particular setting combination s, for each experiment
j ∈ {1, . . . , 100}, we employ one of the five ensemble methods to produce
B MLPs. After each ensemble member b has finished training, we produce
pointwise predictions f̂H(xk) = Ê[Yk|Xk, s](b) for k ∈ {1, . . . ,K}, evaluated
over a fixed, equally spaced grid of input points Xk within the domain
⊗d

i=1[−5, 5]. We set K = 100 for d = 1 and K = 125 for d = 3. We then
produce the (1 − α) · 100% pointwise confidence interval for each ensemble
method.

Using 100 experiments, we calculate the empirical pointwise coverage rate
as Cs ∈ RK , that is, the average number of times the true function values
m(xk) = E[Yk|Xk] have been covered by the pointwise confidence intervals
produced by each method. Setting α = .05, the target pointwise coverage is
95%. To summarize results to a single metric, we then average the pointwise
coverage rates to an average coverage, i.e. C̄s := 1

K

∑K
k=1 Cs

k ∈ [0, 100],
which should also ideally be 95%. Char et al. (2024)
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Table 2: Settings employed for the experiments

Setting Values

Variable settings:

Function type {linear, sin, sin-cos3}

Method {non-bootstrap, bootstrap, cheap bootstrap,

HulC, robust t-stat}

Ensemble size B B = 200 if Method ∈ {non-bootstrap, bootstrap}

B ∈ {6, 10, 15, 20, 30} if Method = cheap bootstrap

B ∈ {5, 6} if Method ∈ {HulC, robust t-stat}

Sample size n {100, 1000, 5000}

Activation function ψ {linear, relu, tanh}

Number of epochs ne {100, 400, 1000}

Batch size nbs {32, n}

Learning rate η {3 · 10−2, 10−2, 10−3, 10−4, 10−5}

Fixed settings:

Network type Multi-layer perceptron (MLP) with single head

Network size L hidden layers and H neurons per layer

Loss type mean squared error (MSE)

Training points of X ∈ Rd X ∼ Unif(⊗d
j=1[−5, 5])

Optimizer Adam (learning rate = η)

Validation ratio (to estimate loss) 0.2n

Type I error rate α 0.05 (to produce 95% pointwise confidence intervals)
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(a) Example ensemble (b) Pointwise coverage over 100 experiments
(red region is target = 95 ± 2.5%)

Figure 8: In (a), we plot an example of a non-bootstrapped ensemble (B = 200) on the
sine function, with η = 0.01, nbs = 32, ψ = relu, ne = 100, and n = 1000 to train a 2 × 32
MLP. Over 100 experiments, the pointwise coverage in (b) averages to 90.2%, slightly
below the target 95%.

5.6 Neural network ensemble additional plots

5.6.1 Non-bootstrapped Ensemble with Mini-batch Gradient De-
scent

Figure 9: Over 100 experiments, we plot average coverage for non-bootstrapped ensembles
(B = 200) on all three functions, setting nbs = 32 and n = 1000, with varying step sizes,
activation functions (ψ), and training time (ne). Coverage generally falls short of the
target but can depend on step size and training time. Overcoverage is often accompanied
by interval widths that are excessively large.
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5.6.2 Bootstrapped Ensemble with Mini-batch Gradient Descent

Figure 10: Over 100 experiments, we plot average coverage for non-bootstrapped ensem-
bles (B = 200) on all three functions, setting nbs = 32 and n = 1000, with varying step
sizes, activation functions (ψ), and training time (ne). The target coverage is achieved
within a "Goldilocks zone" of step size, which is problem-specific but appears to lie on the
interval around η = 0.001 ≈ exp(−6.9).
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5.6.3 Cheap Bootstrapped with Mini-batch Gradient Descent

Figure 11: Over 100 experiments, we plot average coverage for cheap bootstrapped
ensembles (B ∈ {6, 10, 15, 20, 30}) on all three functions, with nbs = 32, n = 1000, ψ =relu,
and ne = 1000. Coverage generally reaches the target given the right step size, except in
the case of sin-cos3, which requires an ensemble size B ≥ 10.
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